Machine learning : implémentation en Python

Loader DigitalCityChargement...

Machine learning : implémentation en Python

(Réf.101603)
35
Heure(s)
Chercheur d'emploi
Payant

Organisé par :

Quels sont les buts de la formation ?

Comprendre et choisir une méthode d'apprentissage automatique - Acquérir les bases du Machine Learning avec Python

Programme de la formation

Comprendre l'apprentissage automatique (Machine Learning)

Machine Learning : définition, contextes d'utilisation, phases (apprentissage, mise en production)
Enjeux et limites
Approches mathématiques et statistiques
Application et types de données : graphes, arbres, courbes, vecteurs de caractéristiques Qualification de la phase d'apprentissage : classification, régression, renforcement, non supervision
Panorama d'algorithmes : régressions (linéaire ou logistique), machines à vecteurs, réseaux de neurones, k plus proches voisins (KNN), boosting,...
Facteurs de pertinence et d'efficacité : nombre d'exemples, qualité des attributs, pourcentage des données renseignées ou manquantes, bruit

Organiser un projet d'apprentissage

Défintion du problème
Acquisition des données
Analyse et exploration des données
Préparation et nettoyage des données
Extraction de caractéristiques
Choix ou construction du modèle d'apprentissage
Entrainement, évaluation et optimisation
Test et vérification de surapprentissage Déploiement

Découvrir des bibliothèques Python

NumPy : manipulation de matrices et fonctions
Pandas : lecture et manipulation de données
Jupyter et ses Notebook : utilisation de cahiers électroniques

Implémenter des algorithmes d'apprentissage sur des données

Présentation d'une base de données
Régression linéaire (simple ou multiple) : étude, import, création et application d'un modèle, évaluation
Régression logistique : packages, création et application d'un modèle, évaluation et matrice de confusion
K plus proches voisins (KNN) : packages Python, Application et évaluation, amélioration
Support Vector Machine (SVM) : principe, découverte de la base de données, application et évaluation
Analyse en composante principale (PCA) : principe, création du modèle et visualisation des données en 2D
Decision Tree : principe, préparation des données, création du modèle et visualisation de l'arbre de décision
Random Forest : principe, implémentation en Python

Evaluer les modèles implémentés

Ré-échantillonnage
Représentativité des données d'apprentissage Interprétation de la matrice de confusion Sensibilité et spécificité d'un test : Receiver Operating Characteristic (ROC) et Area under the ROC Curve (AUC)

Cette formation apparaît au catalogue de Dawan mais aucune date n’a encore été planifiée.